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Summary

In recent years, there has been a proliferation of massive subsurface data sets from sources such as instrumented wells. This places sig-
nificant challenges on traditional production-data-analysis methods for extracting useful information in support of reservoir manage-
ment and decision making. In addition, with increased exploration interest in unconventional-shale-gas reservoirs, there is a heightened
need for improved techniques and technologies to enhance the understanding of induced- and natural-fracture characteristics in the sub-
surface, as well as their associated effects on fluid flow and well performance.

These challenges have the potential to be addressed by developing big-data-analytics tools that focus on uncovering masked trends
related to fracture properties from large volumes of subsurface data through the application of pattern-recognition techniques. We pre-
sent a new framework for fast and robust production-data classification, which is adapted from a real-time face-detection algorithm. This
is achieved by generalizing production data as vectorized 1D images with pixel values proportional to rate magnitudes. Using simulated
shale-gas-production data, we train a cascade of boosted binary classification models that are capable of providing probabilistic predic-
tions. We demonstrate the viability of this approach for identifying hydraulically fractured wells that have the potential to benefit from
restimulation treatment. The results show significant improvements over existing type-curve-based approaches for recognizing
favorable-candidate wells, using only gas-rate profiles.

Introduction

In the past decade, there has been a significant increase in the application of streaming-monitoring technologies, such as permanent
downhole sensors and distributed-acoustic-sensing tools in instrumented wells. For example, we now have shale fields that contain sev-
eral wells that generate long-duration-production data (such as fluid-flow rate, density, pressure, and temperature), which are recorded
in intervals of minutes to seconds. In the context of flow-rate data, big data takes the form of abundant fluid-volume time-series meas-
urements from multiple producing wells within a field, which must be analyzed and inferred for reservoir-related information. However,
there has been a lag in the development of efficient techniques to harness the vast amount of reservoir-related information embedded in
these well data. Recently, there has been increased research interest in big-data analytics for upstream applications, with specific focus
on new tools and techniques for addressing problems related to infrastructure, data organization and management, analysis and discov-
ery, and decision support (Feblowitz 2013). We define the scope of this paper within the context of analysis and knowledge discovery
from big data, more specifically for applications involving well-production data. A number of recent publications within this focus area
have applied data-mining techniques in an attempt to extract useful information from voluminous subsurface time-series data (Seemann
et al. 2013; Aulia et al. 2014; Patri et al. 2014). Although these studies attest to the value of developing new analysis tools for extracting
information from large volumes of data, there is currently insufficient literature on harnessing subsurface big data to improve the char-
acterization of hydraulically fractured wells within naturally fractured shale reservoirs.

In the past decade, technological advances in directional drilling and hydraulic fracturing have led to more economically feasible
exploitation of unconventional reservoirs such as shale. To infer important reservoir properties and performance-related parameters, his-
torical flow rate and pressure data from producing wells are typically analyzed using techniques such as straight-line (regime-flow)
analysis, analytical models, and numerical-simulation approaches (Clarkson 2013). In addition, techniques such as empirical decline-
curve models are commonly used to fit trends to well-production data. However, most of these traditional methods (specifically type-
curve analysis and regime-flow methods) are formulated for vertical wells in conventional reservoirs, which means that they are gener-
ally predisposed to boundary-dominated flow and only provide average information about bulk reservoir properties (Anderson et al.
2010). In addition, they do not consider the complex physics of fluid storage and nanoscale fluid flow associated with shale. A number
of dual-porosity analytical models have therefore been proposed to characterize production from multistage hydraulically fractured
shale wells (Ozkan et al. 2009; Bello and Wattenbarger 2010; Brown et al. 2011). However, these analytical models are often developed
in Laplace space corresponding to specific boundary conditions, which means that numerical-inversion schemes must be used to express
the solutions in the time domain. In addition, they typically require several matrix, fracture, and well input parameters, which are often
expensive or impossible to infer accurately.

Restimulation treatment has the potential to improve the economic performance of producing shale wells by increasing the conduc-
tivity of existing fractures and/or enhancing their contact with the formation (Moore and Ramakrishnan 2006). However, the influences
of matrix and fracture characteristics on the success of restimulation are not completely understood, which has led to uncertainty in
determining favorable-candidate wells and the optimal timing of restimulation treatment. A number of restimulation-candidate-
selection methods have been proposed in the literature. For example, favorable candidates have been identified by predicting untapped
production capacity (as characterized by real-valued targets, such as 5-year cumulative production) using artificial-neural-network
(ANN) models and detailed data such as geographical, reservoir, production, and well-completion information (Shelley 1999;
Mohaghegh et al. 2000). However, under these approaches, there is the potential to impose our understanding of the inputs that
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influence restimulation success on the model. In other words, there is the potential that some essential unmeasured properties are not
captured as model inputs. In addition, this approach might potentially lead to nonintuitive results (e.g., the influence of a parameter
such as surface elevation might be assigned nonzero weight). Also, some of the inputs used in training might be unavailable for new
wells, which limits the generality of these models. In another study, dimensionless groups related to the fracture and other physical
parameters have been defined and correlated with restimulation success (Roussel and Sharma 2011). Numerical-simulation studies have
also been used to study field-production data to define a set of heuristics for candidate selection and restimulation timing (Tavassoli
et al. 2013). Overall, many of these existing methods tend to require detailed input data and/or lack generality to other reservoir settings,
in addition to being time consuming to implement, which limits their applicability to problems involving massive data sets.

In this paper, we aim to address the previously discussed challenges by developing a new methodology for fast and robust analysis
of production data from hydraulically fractured wells. In the context of this work, robustness refers to consistent model performance in
support of flexible development strategies (risk-averse or aggressive) under a wide array of scenarios. We use a dual-permeability
forward-flow-modeling approach to generate multiple realizations of rate/production profiles by modifying fracture, reservoir, and
operational parameters. Using these data, we apply pattern-recognition tools to help uncover trends associated with favorable and
unfavorable restimulation candidates. This is achieved using a binary classification framework adapted from real-time face detection,
which uses simple numerical criteria computed directly from raw flow-rate data, thus eliminating the need for detailed information and
promoting computational efficiency. We show that these features carry information about flow regimes and curvature attributes within
well data at various time scales and time periods during the life of the well. The algorithm also provides probabilistic predictions, which
serve as a means to rank candidate wells. Although the process of training the classifier can potentially be computationally intensive,
the application of the trained classifier on the observed data is extremely fast, thereby rendering the method amenable to real-time clas-
sification on the basis of well performance. This in turn has the potential to affect decision-making work flows involving massive data
sets collected from producing wells within a field, which helps to mitigate uncertainty in reservoir management and decision making
through continuous analysis.

Approach

In this paper, we propose a probabilistic classification framework that is aimed at addressing analysis challenges involving the massive
well-production data sets. This approach is demonstrated for a use case in restimulation-candidate selection. To achieve this, we have
implemented a supervised-learning framework. In the context of restimulation-candidate selection, this means that we predefine two
categories of example wells depending on their observed rate response to restimulation (i.e., “favorable” and “unfavorable” restimula-
tion candidates). Using this information, we train a statistical model to distinguish between both sets of examples and to estimate the
probability of restimulation success. The set of quantitative criteria used in defining favorable and unfavorable candidates will be
addressed in the upcoming sections.

As an alternative to data-driven techniques that use a limited set of reservoir and completion data to forecast real-valued fluid rates
after restimulation, we propose an approach that makes categorical predictions on post-refracturing well performance (i.e., successful
or unsuccessful restimulation treatment) by taking into account subtle decline characteristics embedded within the production/rate data.
On this basis, the statistical approach in this study is adapted from real-time face-detection techniques that use texture-based features in
characterizing input data, with the objective of fast and robust classification performance.

In the abundance of available field-production records where the outcome of the restimulation treatment is known, these well pro-
files can be directly used in training the classification model under the proposed framework. The trained model can then be used to pre-
dict if other candidate wells are likely to benefit from restimulation treatment. On the other hand, in the absence of field data sets, a
flow-simulation approach can be used to generate an ensemble of well-production profiles to serve as training data. However, one
important advantage of the proposed classification framework is that instead of explicitly forecasting a real-valued flow rate after
restimulation, the classification model generates a binary categorical response (“favorable” or “unfavorable” restimulation candidate)
along with an estimated probability of refracturing success. This enables us to generate training data using less-detailed flow-simulation
models, which need only capture the broad reservoir and fracture characteristics in the productive region surrounding the wellbore.

Fig. 1 summarizes the overall work flow we have implemented in the development of the proposed production-data-
classification algorithm.

In the next section, we discuss the details of the forward-flow-simulation approach used in generating training examples and criteria
for specifying favorable and unfavorable restimulation candidates. We then present the proposed statistical framework for production-
data classification. Finally, we discuss the model training and evaluation before considering a field study.

Input Production Data

In line with the supervised learning approach proposed in this paper, the first step in implementing a classification scheme for identify-
ing restimulation candidates is to define examples of wells that have undergone both successful and unsuccessful restimulation. As pre-
viously mentioned, in the abundance of field-production data from restimulated wells with accompanying completion information, the
proposed classification approach can be applied to “learn” the differences using rate-decline characteristics. However, because of the
limited availability of field data, we use a forward-flow-simulation approach in this study.

The overall strategy is to simulate multiple realizations of gas-flow rate from a hydraulically fractured shale-gas well and assign
class labels depending on post-refracturing performance. In the following subsections, we discuss the flow-simulation model and the
reservoir characteristics that contribute to restimulation success.

1. Forward-
flow

simulation

• Dual-porosity
model

2. Restimulation-
candidate

characterization 

• Post-refracturing-
performance metrics

3. Production-
data

characterization

• 1D Haar-like
features

4. Classifier
training and
evaluation 

• AdaBoost
cascade model

5. Model
validation 

• Field study

Fig. 1—Summary of overall work flow for developing the proposed production-data-classification model.
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Flow-Simulation Model. In this paper, we use a probabilistic classification approach to develop a set of rules for identifying restimula-
tion candidates, using rate-decline characteristics. In other words, in contrast to existing data-driven approaches that explicitly forecast
flow rate after restimulation, the proposed classification framework returns a categorical prediction (favorable or unfavorable candidate)
and an accompanying probability of restimulation success. Therefore, in generating well data for training, this enables us to implement
less-detailed flow-simulation models that need only capture the aggregate rate response to fracture and reservoir properties in the pro-
ductive region surrounding hydraulically fractured wells.

On this basis, the flow-simulation model used in this study features one multistage hydraulically fractured shale-gas well within a
307-acre reservoir. This model is sized to represent the areal extent of a shale-gas reservoir of midrange productivity (Kulga 2014). We
have used a 61� 61� 5 Cartesian grid with the x- and y-dimension fixed at 60 ft, whereas the vertical grid dimensions have been
varied between 20 and 60 ft. Within this reservoir model, we randomly sample from a set of uncertainty parameters related to fracture,
fluid, reservoir, and operational properties to generate an ensemble of well profiles with realistic shale-gas rate-decline characteristics.

Flow in naturally fractured media is modeled in a commercial simulator using the dual-permeability approach with the Gilman and
Kazemi (1988) shape factor. In line with the stimulated-reservoir-volume (SRV) approach (Mayerhofer et al. 2006), we assume that the
majority of reservoir productivity comes from a network of hydraulic fractures and rejuvenated natural fractures in the vicinity of the
wellbore. Fig. 2 depicts the SRV geometry we have specified to model flow within the productive region around the horizontal well.

In Fig. 2, the area surrounding the wellbore has been modeled as a series of planar hydraulic fractures, each flanked by a network of
rejuvenated natural fractures. We have assumed equally spaced hydraulic fractures with symmetry about the horizontal wellbore. Both
the hydraulic and rejuvenated fractures around the wellbore have been defined using 5� 5� 1 logarithmic grid refinement around the
fractures, which is intended to accurately capture the fluid flow within fractures, within the shale matrix, and between fracture and shale,
as proposed by Rubin (2010). Under this framework, a 1-ft grid cell (central block in refined grid) is used to mimic the effect of a
0.001-ft fracture, and the Forchheimer number is scaled to reflect this assumption. To generate an ensemble of well-production profiles,
we have randomly sampled uncertainty parameters related to the SRV fracture characteristics, as displayed in Table 1.

In Table 1, all parameters are sampled from uniform distributions, with the uncertainty ranges calibrated using publicly available
field-production data from West Virginia Marcellus Shale gas wells.

The physical extent of the SRV region is dictated by the hydraulic-fracture half-length, hydraulic-fracture spacing, and the number
of hydraulic-fracture stages. The conductivity at the tip of the fracture is allowed to decrease with increasing distance from the well-
bore, using a percentage reduction factor. This parameter serves as a proxy to account for mechanisms such as proppant crushing and
fluid leakoff. Likewise, complex fracture conductivity is expressed as a percentage of induced-hydraulic-fracture conductivity. Apart
from this, we have included a fractional parameter that accounts for the reduction of natural-fracture spacing in the SRV region.

Finally, to capture pressure-dependent conductivity reduction in the induced and complex fractures, as proposed in Eshkalak et al.
(2014), we have applied the Chin et al. (2002) correlation,

kf ðDPÞ ¼ kfie
�df DP; ð1Þ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Planar
hydraulic
fractures

Complex
fractures

Fig. 2—SRV representation in the flow simulator. The productive region around the well is modeled by assuming equally spaced
planar hydraulic fractures, each flanked by a network of rejuvenated natural fractures.

Property Minimum Maximum 

Hydraulic-fracture half-length (ft) 270 570 
Hydraulic-fracture spacing (ft) 120 300 
Number of hydraulic-fracture stages 5 9 
Hydraulic-fracture conductivity (md-ft) 10 30 
Reduction in hydraulic-fracture-tip conductivity (%) 25 90 
Complex fracture-conductivity reduction (%) 60 75 
Natural-fracture-spacing reduction in SRV (%) 0 90 
Pressure-dependent fracture-conductivity-decline constant, df 10–3 10–5

Table 1—Flow-simulation parameters related to fracture characteristics in the SRV region.
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where df denotes pressure-dependent permeability-decline rate (i.e., fracture-closure rate), kfi represents initial fracture permeability,
and DP is the pressure drop from the initial reservoir pressure. The induced and complex fractures are each assigned different rates of
permeability reduction. Because we use constant fracture width in the flow model, df is referred to as a conductivity-decline constant in
Table 1.

We have randomly sampled 15 additional reservoir-uncertainty parameters as inputs to the flow-simulation model. These include
diffusion and sorption effects to account for physical phenomena specific to shale-gas reservoirs. In addition, well production is con-
strained using a constant-pressure specification. The ranges of values from which these parameters have been sampled are shown
in Table 2.

Restimulation-Candidate Characterization. Using the flow simulator, the next step is to generate multiple gas-production profiles
corresponding to both favorable- and unfavorable-restimulation candidates to serve as input to our classifier-training algorithm. This is
achieved using the following steps.

1. Sample multiple combinations of the fracture, reservoir, and operational parameters in Tables 1 and 2.
2. Put the well under constant-pressure production for a fixed number of years before simulating a restimulation event.
3. Compute post-refracturing-performance metrics using the rate response of 1 year after restimulation.
4. Assign a categorical label for a favorable candidate (1) or an unfavorable candidate (–1), depending on the observed production

characteristics. Using these labels, we then present the prerefracturing production data to the classification algorithm and train it
to predict without having access to the post-refracturing outcome.

As discussed in Jayakumar et al. (2013), there are a number of restimulation-treatment techniques for multistage hydraulically frac-
tured horizontal wells. Fig. 3 depicts the approach we have implemented to model restimulation treatment. As shown in Fig. 3, we
insert new hydraulic fractures between existing planar stages to increase contact with the formation within the SRV region. In the
absence of detailed fracture-model inputs, we assume the new hydraulic fractures have the same conductivity, complex fracture geome-
try (Fig. 2), and related fracture properties (Table 1) as the existing hydraulic fractures. This is dependent on an assumption of
unchanged operational procedures and rock properties.

Given an ensemble of restimulated-well-production profiles, the next step is to define favorable- and unfavorable-restimulation-
candidate examples to provide a basis for the classification algorithm to learn patterns associated with each category. To achieve this,

Parameter Minimum Maximum 

Formation thickness (ft) 100 300 
Non-SRV fracture spacing (ft) 0.1 10 
Non-SRV fracture conductivity (md-ft) 0.0001 0.05 
Shale porosity (%) 3 13 
Shale permeability (md) 1.00×10–3 1.00×10–4

Shale compressibility (1/psi) 1.00×10–6 3.00×10–6

Diffusivity (cm2/s) 2.00×10–5 8.00×10–5

Langmuir volume (scf/ton) 50 250 
Langmuir pressure (psi) 500 1,500 
Bulk density (g/cm3) 2.1 3 
Initial gas saturation 0.65 0.85 
Initial pressure (psi) 2,000 8,000 
Reservoir depth (ft) 5,000 1,000 
Initial reservoir temperature (°F) 100 350 
Flowing bottomhole pressure (psi) 250 1,000 

Table 2—Additional reservoir and operational parameters.

New infill fracture stages

Existing hydraulic fractures

Fig. 3—Modeling of infill restimulation treatment, adapted from Jayakumar et al. (2013). The black slabs represent existing
hydraulic-fracture stages, whereas the green slabs are the new infill refracturing stages inserted between planar fractures.
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we fit an empirical decline model (Arps 1945) to the initial-rate data and forecast the gas rate assuming no restimulation. Using this
information, we then estimate the percentage increase in cumulative production 1 year after restimulation, relative to the estimated pro-
duction in the absence of restimulation. With this approach, we generate a histogram of percentage increase in cumulative production
1 year after restimulation, and apply a threshold at the 50th percentile. This procedure is depicted in Fig. 4.

In Fig. 4, all wells exhibiting cumulative production improvement greater than 28.5% are deemed good restimulation candidates.
Note that the use of a 50th-percentile threshold is arbitrary in this case, and more care can be taken in defining the threshold to meet spe-
cific economic objectives. Fig. 5 displays extreme examples of unfavorable and favorable candidates assigned using this criterion for
wells refractured after 2 years.

To capture the operational-rate fluctuations typical of field-production data, we have introduced perturbations (in percent) to the
SRVs, which are drawn from a Gaussian distribution with a mean of zero and standard deviation of 5%. This serves to provide a more-
realistic and more-challenging problem for the pattern-recognition algorithm, compared with the direct use of clean synthetic rate
responses like those shown in Fig. 5. Fig. 6 displays sample input production data after incorporating rate fluctuations.

In Fig. 6, we see that the simulated flow rate at each time instance has been perturbed, whereas the overall decline behavior is
retained. In line with the criteria for restimulation success depicted in Fig. 4, the well profiles labeled as unfavorable candidates show
significantly steeper decline in production after restimulation. In other words, they have been labeled as unfavorable because they fall
to less than the 50th-percentile threshold for cumulative production enhancement (28.5%).

Within the defined framework, what specific combination of flow-model parameters contributes to restimulation success? We have
first performed a manual inspection of univariate and bivariate flow-parameter distributions used in simulating the training data, and we
have observed no discernable distinction between the distributions of favorable and unfavorable candidates. This suggests that there are
no individual or simple combinations of physical parameters that can be modified to guarantee restimulation success. Thus, we need to
consider a higher-order interrelationship between these variables. To establish a link between the observed outcome of restimulation
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increase. Solid curves represent the gas-rate data, whereas the dashed curves represent the extrapolated production.
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and the influencing reservoir properties, we have therefore performed a multivariate analysis of the input variables used in generating
the training data set. This has been achieved by use of principal-component analysis to determine the direction in multidimensional
space along which we can observe maximal separation between the multivariate distributions of favorable and unfavorable restimula-
tion candidates, depending on 1-year cumulative-production improvement. This is depicted in Fig. 7.

In Fig. 7, the fracture, reservoir, and operational parameters in Tables 1 and 2 have been projected along the direction of maximum
separation between favorable and unfavorable restimulation candidates in parameter space. The blue and red histograms represent the
distribution of principal-component scores for unfavorable and favorable candidates, respectively. Fig. 7 shows the wells in the top-
and bottom-25th percentiles of cumulative-production increase (total of 1,250 wells), depending on cumulative-production enhance-
ment. The principal-component score zi for well i is given by

zi ¼
X
8k

lkwki; ð2Þ

where wki represents the flow-simulation parameters, which have been standardized to eliminate the influence of the relative magnitude
of each individual parameter (i.e., scaled to yield zero mean). In the summation, lk is the principal-component-vector-loading coefficient
associated with each flow-simulation parameter k. The “loadings” for the flow-simulation parameters used in generating the training
data are shown in Table 3. In multivariate flow-parameter space, the loadings shown in Table 3 are the coordinates of the vector along
which we observe the largest separation between favorable and unfavorable restimulation candidates, as depicted in Fig. 7. These load-
ings are sorted in descending order of absolute magnitude. Under the current framework, the significance of Table 3 is that it summa-
rizes the relative influence of the fracture, reservoir, and operational parameters in separating favorable and unfavorable restimulation
candidates. At the top of the list, we see that the rate of pressure-dependent hydraulic-fracture closure exerts the highest influence in dis-
tinguishing between both categories, in addition to initial gas saturation, hydraulic-fracture-tip conductivity, and spacing. On the other
end, the loading-vector coefficients suggest that the restimulation outcome is largely uninfluenced by factors such as reservoir depth,
shale-matrix permeability, pressure-dependent closure of complex fractures, and number of hydraulic-fracture stages.

In Fig. 7, we can observe that favorable candidates tend to have more negative principal-component scores, whereas unfavorable
candidates tend to have more positive scores. Although caution must be taken in interpreting the signs of the loadings, this suggests that
on aggregate, larger values of parameters with negative loading coefficients in Table 3 would lead to increased chance of restimulation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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success. However, there are multiple combinations of properties that can yield similar principal-component scores, when we compute
the sum of products shown in Eq. 2. This illustrates one potential pitfall of production-data-analysis models and techniques that take
into account only a subset of these parameters. In addition, the majority of these input parameters are impossible or expensive to infer
accurately in practice. However, given that restimulation success can be quantified depending on rate response, it is clear the rate data
directly hold information about the aggregate effect of different combinations of parameters and how their influence is manifested in
the outcome of restimulation. For this reason, in the next section, we propose an alternative approach that decomposes production data
into a collection of subtle rate-decline characteristics to serve as input to a classification model.

Finally, to explore the sensitivity of the classification performance to different restimulation-candidate-selection criteria, we have
considered the following two additional metrics:

• Restimulation-candidate selection that is dependent on instantaneous percentage increase in flow rate post-refracturing.
• Change in decline rate after restimulation. This is determined by fitting the Arps (1945) hyperbolic decline model to the data

before restimulation and after restimulation, and defining the restimulation success depending on the percentage increase in the
hyperbolic decline constant.

Table 4 summarizes the criteria used in assigning favorable- and unfavorable-candidate labels to the training production data. As
shown, we have also considered two different options for restimulation timing: 2 and 3 years of production before treatment.

Production-Data-Classification Framework

In this section, we describe the proposed pattern-recognition framework for analyzing well-production data, motivated by techniques in
face detection (Viola and Jones 2001). The overall aim is to develop a fast and robust probabilistic binary classification model that uses

Parameter k Loading lk
Hydraulic-fracture-closure rate 0.509 
Initial gas saturation 0.432 
Hydraulic-fracture-tip conductivity –0.368 
Hydraulic-fracture spacing –0.286 
Langmuir volume 0.213 
Diffusivity –0.204 
Shale porosity –0.204 
Reservoir thickness 0.201 
Flowing bottomhole pressure –0.179 
Hydraulic-fracture half-length –0.174 
Hydraulic-fracture conductivity –0.169 
Shale compressibility 0.146 
Langmuir pressure –0.132 
Initial reservoir temperature –0.098 
Complex fracture conductivity 0.094 
Complex fracture spacing 0.078 
Initial reservoir pressure –0.069 
Bulk density 0.069 
Natural-fracture conductivity 0.047 
Natural-fracture spacing –0.042 
Reservoir depth 0.016 
Shale permeability –0.008 
Complex fracture closure rate 0.003 
Number of hydraulic-fracture stages –0.001 

Table 3—Principal-component loadings for training data. Loadings

are sorted in descending order of absolute magnitude.

Timing of Refracturing 2 Years 3 Years 

Criteria Minimum Maximum Threshold (P50) Minimum Maximum Threshold (P50) 

Change in 1-year cumulative 
production 0.0724 0.565 0.285 0.0390 0.634 0.287 

Change in instantaneous rate 0.595 10.135 1.527 0.601 13.055 1.602 
Change in decline rate –0.429 2.767 0.637 –0.133 2.886 0.944 

Table 4—Distribution of restimulation-candidate-selection criteria computed from training data. All values are expressed as propor-

tions (unitless).
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input features obtained directly from the rate data. The advantage of the binary classification approach is that it allows us to develop a
flexible tool that can be used to address a wide array of problems related to well performance. In other words, if we can define two sets
of well-production data that conform to any binary criteria of economic interest, such as “favorable” or “unfavorable” restimulation
candidates, then we train a model to distinguish and accurately identify a new candidate well. In addition to these categorical predic-
tions, we can extract probability estimates that provide a means to rank candidate wells. In this section, we discuss the proposed well-
data representation, after which we show how discriminative features can be extracted as inputs to the classification algorithm. Third,
we present the statistical framework for distinguishing between binary categories of well data.

Well-Data Representation. How exactly do we apply face detection to analyze well data? This is achieved by representing well-
production data as 1D vectorized images with pixel values indicating flow-rate magnitudes. This approach is depicted in Fig. 8.

In Fig. 8, the gas-production rate from a restimulated shale-gas well is shown, with the corresponding image-vector representation
depicted underneath. In other words, the volume of gas produced during each time interval is proportional to the “pixel intensity” of
each element in the image vector. Intuitively, this can be thought of as a “strip” of an image.

Let us now define the notation used in representing the well data. We begin with a well-production data set, where the gas volume
from an arbitrary well i at time t is denoted as qiðtÞ, for all i ¼ 1;…;N and t ¼ 1;…; tf . This implies a structured data set containing
N wells, with each well profile containing rate data sampled at equal and constant intervals for tf time units. Uniform time sampling is
generally a valid assumption for most field-collected well data. However, in cases with missing data, decline-curve methods might be
used to estimate unavailable production information. Also, in a data set containing wells with dissimilar sampling intervals, all wells
would need to be scaled up to conform to the coarsest timestep available.

As a preprocessing step, to provide a uniform basis for comparison between data, we have normalized all samples by their initial
production rate,

~qiðtÞ ¼
qiðtÞ

qiðt ¼ 1Þ : ð3Þ

Input-Feature Extraction. Given a data set with normalized rates, the first step in the pattern-recognition work flow is to define a set
of attributes for each well profile to serve as a basis for distinguishing between wells that exhibit different characteristics. As previously
mentioned, one common approach in existing data-driven models is to specify a set of uncertain reservoir and completion input para-
meters into a pattern-recognition scheme such as an ANN, which are largely selected depending on availability. In addition to requiring
detailed and potentially expensive data, this modeling approach implicitly assumes that well productivity is only related to the finite set
of selected input parameters, and thus neglects the influence of unmeasured reservoir properties. This has the potential to yield nonintuitive
model coefficients, and also limits the applicability of the model to wells where exhaustive data are available.

As an alternative, by recognizing that the rate response from a producing well holds the most reliable truth regarding the multivariate
relationship between subsurface characteristics, we instead use numerical attributes that are extracted directly from rate/production
data. In this way, the pattern-recognition scheme is able to relate well performance to the subtle rate-decline characteristics observed at
different time scales and time periods in large well-production data sets, which reflect the aggregate effect of competing
reservoir influences.

With this objective in mind, we have characterized each production profile by computing 1D Haar-like features, in a manner similar
to the Viola and Jones (2001) face-detection approach. As the name implies, these features are analogous to Haar wavelets used in
image-processing applications. The feature geometries we have used are shown in Table 5.

For each well profile, we generate a list of feature scores xi ¼ ½xi1; xi2;…; xip� by shifting and scaling each template shown in Table 5
throughout the producing life, and computing a real-valued feature score in each case. These feature scores are computed by simply sub-
tracting the sum of normalized rates in the white region from the sum of normalized rates in the gray region. More formally, for each fea-
ture geometry z 2 f1; 2g, given a feature scale Dt and starting-time index t ¼ 1;…; tf , we compute each feature score xijð~qi; t;Dt; zÞ as

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 8—Gas-production rate from a restimulated well (top), and the corresponding 1D image-vector representation (bottom). The
color (pixel intensity) is proportional to the gas rate.
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xijð~qi; t;Dt; zÞ ¼

XtþDt

2
�1

t0 ¼t

~qiðt0Þ �
XtþDt�1

t0 ¼tþDt

2

~qiðt0Þ; ðz ¼ 1Þ; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð4aÞ

XtþDt

3
�1

t0 ¼t

~qiðt0Þ �
Xtþ2Dt

3
�1

t0 ¼tþDt

3

~qiðt0Þ þ
XtþDt�1

t0 ¼tþ2Dt

3

~qiðt0Þ; ðz ¼ 2Þ; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð4bÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

where

Dt ¼
2; 4; 6;…; tf ; ðz ¼ 1Þ;
3; 6; 9;…; tf ; ðz ¼ 2Þ:

�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð5Þ

In Eqs. 4 and 5, the index j ¼ 1;…; p represents a unique combination of feature geometry, time, and scale. For example, we can
extract a total of p ¼ 236 feature combinations from a 2-year well profile with monthly sampled data (i.e., tf ¼ 24Þ.

Intuitively, these texture-based features adapted from image/object-detection applications can be considered analogous to rate deriv-
atives, which have traditionally been used in rate-transient analysis to infer flow-regime information from well data. In other words,
using basic forward-difference approximations,

d~qi

dt0

����
t0
� ~qiðt0Þ � ~qiðt0 þ Dt0Þ

Dt0
; ð6Þ

d2 ~qi

ðdt0Þ2

����
t0
� ~qiðt0Þ � 2~qiðt0 þ Dt0Þ þ ~qiðt0 þ 2Dt0Þ

ðDt0Þ2
: ð7Þ

Comparing Eq. 6 with Eq. 4a, we can see that features computed using the two-rectangle template (z ¼ 1) are related to the first
derivative of normalized flow rate. Furthermore, if we consider the summation terms in Eq. 4a as upscaling operations that coarsen the

sampling interval from one unit of t to a larger timestep of
Dt

2
, then Eq. 6 collapses to Eq. 4a because Dt0 ¼ 1 at this coarser scale. This

means that when we compute multiple combinations of these features for a given well profile at different t and Dt, we are effectively
decomposing the signal into a series of rate derivatives at multiple time periods and scales. Importantly, this implies that the two-
rectangle features carry information about flow regimes experienced over the productive life of the well. Similarly, if we compare Eq. 7
with Eq. 4b, we see that the three-rectangle features (z ¼ 1) are analogous to the second derivative of the normalized rate. This attribute
captures the curvature characteristics at different time periods and scales within the well data. One advantage of considering each of
these features at multiple scales is that it helps to mitigate the effect of instantaneous fluctuations in rate or measurement error, making
the method robust to noise.

In big-data applications involving a significant amount of finely sampled well data, it becomes more important to minimize the com-
putational cost incurred in calculating these feature scores. To achieve this, we can take advantage of the simple geometries of these
feature templates. In other words, we can precompute the cumulative normalized rate for each well at each time instance using

~QiðtÞ ¼
Xt

t0¼0

~qiðt0Þ: ð8Þ

The summation ~QiðtÞ is calculated for all t ¼ 1;…; tf . After precomputing ~QiðtÞ for each well, we can then easily determine all fea-
ture scores at each time t and scale Dt using

xijðt;Dt; zÞ ¼
2 ~Qi tþ Dt

2
� 1

� �
� ~Qiðt� 1Þ � ~Qiðtþ Dt� 1Þ; ðz ¼ 1Þ

2 ~Qi tþ Dt

3
� 1

� �
� ~Qiðt� 1Þ � 2 ~Qi tþ 2Dt

3
� 1

� �
þ ~Qiðtþ Dt� 1Þ; ðz ¼ 2Þ:

8>>><
>>>: � � � � � � � � � � � � � � � � ð9Þ

In other words, the summation operations in Eqs. 4a and 4b have been represented as a set of basic arithmetic operations in Eq. 9,
thus minimizing the computational expense incurred through unnecessary iterations. Note that ~qið0Þ ¼ ~Qið0Þ ¼ 0. By translating each

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feature Template, z Geometry 

1 

2 

Table 5—Features used for production-data classification. To compute

a feature score for each geometry, the sum of rates in the white region

is subtracted from the sum of rates in the gray region. These templates

are shifted and scaled throughout the well profile, and a feature

score is computed in each case.
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feature template in time at different scales, the final output from this step is an exhaustive set of feature scores xi ¼ ½xi1; xi2;…; xip� for
each well i ¼ 1;…;N, where p is the total number of feature combinations available within each production profile.

Statistical Framework. Given a data set made of p Haar-like features scores extracted from N wells, the next step is to define a statisti-
cal basis for identifying restimulation candidates. In a manner similar to Viola and Jones (2001), we have framed this problem using a
binary classification approach, and extended the methodology to extract probability estimates. In other words, instead of explicitly fore-
casting a real-valued flow rate after restimulation, the predictive model generates a categorical response (favorable or unfavorable
restimulation candidate) along with an estimated probability of refracturing success.

The engine of the binary classification framework used in the Viola and Jones (2001) procedure is a statistical learning method
known as AdaBoost. The algorithm takes in a list of feature scores xi ¼ ½xi1; xi2;…; xip� and a categorical outcome vector yi 2 f�1; 1g
for all training well-production data i ¼ 1;…;N and features j ¼ 1;…; p. In the vector yi, –1 and 1 are categorical labels that denote
unfavorable and favorable candidates, respectively. For each unique feature j, we can collate the feature scores computed from all train-
ing data and use yi to develop a simple binary classification model depending on a single threshold bj. This is known as a single-node
binary decision tree (decision stump), as depicted in Fig. 9. The threshold bj is selected by minimizing an impurity function known as
the Gini index (Breiman et al. 1984), which serves to minimize the number of misclassifications with respect to the training data. This
fitting procedure can be performed using common statistical software packages.

In Fig. 9, we denote the decision stump trained using feature j as f ðxij; bjÞ 2 f�1; 1g. All data with feature scores greater than bj are
predicted as unfavorable candidates, and vice versa. Note that the inequality can be reversed depending on the distribution of feature
scores. For each candidate feature j ¼ 1;…; p, we can quantify the performance of each decision stump by computing the weighted
classification error ej with respect to the training data using (Hastie et al. 2009)

ej ¼

XN

i¼1
wi � I½f ðxijÞ 6¼ yi�XN

i¼1
wi

: ð10Þ

In Eq. 10, ej lies between zero and unity and wi represents the weights assigned to each well-production profile, which are equal by
default. I½ f ðxijÞ 6¼ yi� is an indicator function that returns zero if the prediction matches the true categorical label and returns unity in
the case of a mismatch. As is visible in Fig. 9a, there is a significant amount of overlap between the distributions of favorable and
unfavorable candidates, which would lead to a large number of misclassifications. Because of the simplistic nature of these single-
threshold classification rules, they are in practice expected to yield only slightly better predictions than a random guess (Friedman et al.
2000). For this reason, they are referred to as “weak classifiers.” In contrast, the AdaBoost algorithm uses a sequential fitting procedure
to combine or “boost” the poor predictions from these individual decision stumps into a more-accurate classifier. The AdaBoost training
procedure is summarized in Table 6.

As shown in Table 6, for a given number of iterations m ¼ 1;…;M, the overall strategy is to train one individual decision stump
f ðxijÞ for each of p available features; compute the associated weighted error ej using Eq. 10; and then select the weak classifier fm that
minimizes the weighted classification error em at the current iteration m. The weighted error is used to compute a “voting weight” am,
which is indirectly proportional to the error. This weak classifier is then reapplied to the training data, and misclassified examples are
assigned higher weights for the next iteration, w

ðmþ1Þ
i . The final outcome of the training procedure is a list of the weak classifiers fm

selected after each iteration and their corresponding “voting weights” am for m ¼ 1;…;M, which are linearly combined to return a cate-
gorical prediction as

ŷ ¼ sign GðxiÞ ¼
XM

m¼1

ðamfmÞ � h

" #
: ð11Þ

In Eq. 11, GðxiÞ returns a real number between �1 and 1. As indicated, the sign of the result gives the predicted category
ŷ ¼2 f�1; 1g, where 1 and –1 denote favorable and unfavorable candidates, respectively. In other words, if we evaluate GðxiÞ for any
arbitrary well-production profile, a negative value will be assigned to unfavorable candidates and a positive value will be assigned to
favorable candidates. The variable h is a tuning parameter that is zero by default, and will be discussed later. The intuitive explanation
of Eq. 11 is that each weak classifier fm has received a weight am that is proportional to its individual accuracy in distinguishing between

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. 9—(Left) Distribution of scores for feature j 5 1 computed with respect to all wells in the training set. bj is the optimal thresh-
old that minimizes overlap between favorable and unfavorable categories. If xij (the feature score computed with respect to well i
and feature index j ) is greater than threshold bj , the well is assigned a categorical label of –1 (unfavorable candidate), and vice
versa. (Right) Depiction of the decision-stump-classification model.
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favorable and unfavorable candidates. In this way, the predictions from M weak classifiers are combined by means of a “committee
vote” (Freund and Schapire 1996). The AdaBoost fitting procedure shown in Table 6 can be performed using common open-source sta-
tistical software.

There are a number of properties that make AdaBoost a model for our problem. First, the training algorithm implements a weighting
procedure (Step 2d in Table 6) in which misclassified examples are assigned higher importance for the next iteration. It can be shown
that these weights serve to minimize an exponential loss function, which is monotonic and smooth. For this reason, AdaBoost is empiri-
cally considered to be robust to overfitting (Friedman et al. 2000), in contrast to methods such as ANN and support-vector machines.
Second, we can typically build a strong AdaBoost classifier using M < p iterations. In other words, it functions as a natural feature-
selection process, in which the more-discriminative features receive higher voting weights am. This greatly mitigates the computational
cost associated with calculating all p features during training and also while assessing unseen candidate wells, which becomes more sig-
nificant with larger data sets. Third, the additive model GðxiÞ can be probabilistically interpreted. Following a log odds-ratio (logit)
model or its inverse, the antilogit probabilistic model, the probability of an arbitrary data sample belonging to either category (1 or –1)
can be expressed as (Friedman et al. 2000)

Pðy ¼ 1jxiÞ ¼
eGðxiÞ

eGðxiÞ þ e�GðxiÞ
; ð12Þ

Pðy ¼ �1jxiÞ ¼
e�GðxiÞ

e�GðxiÞ þ eGðxiÞ
: ð13Þ

Using this information, we can therefore scan an ensemble of production profiles and estimate the probability that each well is either
a favorable or an unfavorable candidate. This provides a means to quantify the uncertainty in predicting each well to be a favorable or
an unfavorable restimulation candidate. If the probabilities are not very discriminatory, the procedure would suggest that the observed
production information is inadequate for making reservoir-development decisions, and other sources of information need to be investi-
gated to lead to more-robust decisions. In addition, by using these probability estimates, we have a basis for ranking candidate wells.

The final step in the overall training framework for the production-data classifier is the cascade-training procedure (Viola and Jones
2001). The overall idea is to train a series of AdaBoost models that are increasingly more discriminative. In other words, in each succes-
sive stage, more iterations are dedicated to improving the overall classification accuracy. In this way, wells that display strongly
unfavorable characteristics are weeded out early in the process, which means that we only need to compute a much smaller subset of
Haar-like features. This has the potential to lead to significant time savings in applications involving massive data sets. The cascaded
classifier structure is depicted in Fig. 10.

In Fig. 10, during the cascade-prediction protocol for any arbitrary well profile, we run the AdaBoost model in each successive stage
by evaluating Eq. 11. At each stage, we only proceed to the next stage if a value of unity is predicted. The probability of restimulation
success can be estimated at the stage of termination using Eq. 12.

The cascade model shown in Fig. 10 is trained by tuning the true-positive and false-positive classification ratios in each successive
AdaBoost model to impart a desired level of accuracy in predicting favorable and unfavorable candidates. In the binary classification
literature, the true-positive ratio represents the proportion of data that belong to the favorable category (1) and are correctly predicted.
On the other hand, the false-positive ratio refers to the proportion of data that belong to the unfavorable category (–1) and are errone-
ously predicted as members of the favorable category. In Eq. 11, when we take the sign of GðxiÞ as a basis for assigning data to
classes –1 or 1, an AdaBoost binary classification threshold of zero is implied. The h parameter, which is zero by default, can therefore
be decreased to ensure more training data are assigned to the favorable class (i.e., increase true-positive ratio) and vice versa. In the
limit, if we set h ¼ �1, all data will be assigned to the favorable class, with true-positive and false-positive ratios both equaling unity.
In the cascade-training process, we take advantage of h in tuning each successive AdaBoost model to accept increasingly fewer false-
positive classifications while simultaneously maximizing the accuracy of true-positive classification.
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=
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Table 6—AdaBoost classification algorithm modified from Hastie et al. (2009).
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The pseudocode for the cascaded classifier-training algorithm is presented in Table 7. In the table, Fps and Dps are user-defined mul-
tiplicative factors used to control the false-negative and false-positive ratios per cascade stage, whereas the optional parameter n is used
to control the complexity of the AdaBoost model trained in each stage. In addition to improved computational efficiency, this approach
has the potential to serve as a flexible training procedure that can be modified to prioritize the classification accuracy of favorable or
unfavorable wells depending on the economic objectives.

Results and Discussion

In this section, we present the results of model training and evaluation for the proposed production-data-classification algorithm. Next,
we compare this with the performance of a type-curve approach in identifying restimulation candidates. Finally, we show the results of
a field-validation study using the proposed pattern-recognition approach.

Classifier Training and Evaluation. Using the generated training production data along with categorical labels denoting favorable (1)
and unfavorable (–1) restimulation candidates, we have applied the proposed Viola and Jones (2001) framework to train a production-
data-classification model. The training and evaluation procedure involves the following steps:

1. Given a collection of training data, compute feature scores for all combinations of Haar-like feature geometry, scale, and starting
time within the individual well profiles.

2. Train the AdaBoost cascade model with a random sample of N well profiles, using feature scores computed with respect to the
data before restimulation.

3. Assess the model predictive performance by scanning V wells and comparing the predicted restimulation outcome with the
known outcome.

Table 8 displays the cascade-training parameters we have implemented.

Decreasing false-positive error

Input well Stage 1
favorable?

No

Stage 2
favorable?

No

Yes Stage S
favorable?

No

Yes Favorable

Unfavorable Unfavorable Unfavorable
AdaBoost

model

Fig. 10—Cascaded-classifier-prediction protocol, modified from Viola and Jones (2001). Each cascade stage contains one
AdaBoost model. Each successive stage is increasingly more discriminative (i.e., lower false-positive error). If at any stage an
unfavorable candidate is predicted, the process is terminated. The probability of restimulation success can then be estimated at
the stage of termination using Eq. 12.

Input: 

1. Pool of K training data with class labels, where K N

a. Training/testing-data split ratio, N/V, where N + V = 1 

2. User-defined objectives 

a. Maximum false-positive ratio per stage, Fps

b. Minimum true-positive ratio per stage, Dps

c. Number of features per stage multiplier, n (optional) 

Procedure: 

1. Randomly select N/2 favorable-training cases and V test samples from pool 

2. Initialize F0 = 1, D0 = 1, s = 0  

3. While , > −1s sF D

a. Increment stage ; initialize number of iterations, m = 0 = +1s s

b. While  or , −> × 1s ps sF F F ≤ ×m n s

i. Begin new AdaBoost iteration, = + 1m m

ii. Train AdaBoost classifier with selected training samples 

iii. While −≤ × 1s ps sD D D , 

• Decrease the threshold θ of the classifier at current stage s

c. Evaluate new cascade classifier on negative examples in the training pool and select 
N/2 false positives as the new unfavorable-training cases 

Table 7—Cascade-training procedure adapted from Viola and Jones (2001).
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As previously discussed, in defining restimulation success, we have considered three separate candidate-selection criteria. In each
case, to capture the effect of the timing of refracturing, we have used either 2 or 3 years of production data before the restimulation
event. After the training process, the predictive performance of each of these classifiers has been tested by assessing a synthetic test set
containing V ¼ 100 well-production profiles, which were not available to the training algorithm. Table 9 summarizes the results of the
training exercise for the production-data classifier and their predictive performance with respect to synthetic data.

The results in Table 9 show that regardless of the restimulation-candidate-selection criteria, we are able to distinguish between
favorable and unfavorable candidates with accuracy of 76 to 84%. By comparison, a monolithic (single-stage) AdaBoost classifier
yields an overall classification accuracy of 76% (for 200 iterations) in the case involving 2 years of production, depending on the
cumulative-production-improvement criterion. The results in Table 9 suggest that improvement in instantaneous rate after restimulation
is the least reliable indicator of restimulation success, as highlighted by the lower classification accuracy for both 2- and 3-year cases.

In Table 9, we see that the trained classifiers have 10 to 14 cascade stages. We can observe that that the instantaneous-rate-change
criterion requires more training time for both 2- and 3-year cases. This can be attributed to that fact that more AdaBoost iterations are
required in each cascade stage to meet the convergence criteria shown in Step 3b of Table 7. This is further evidence that instantaneous
increase in flow rate after restimulation is the least discriminative metric for restimulation success. Nevertheless, in all cases, although
training might potentially be computationally intensive, the final trained classifier is able to provide predictions on the test set in
near real time. For example, the classifier derived from the cumulative-production-improvement criterion can make predictions on
100 samples of 2-year well production in 0.35 seconds. All reported run times are derived from a 64-bit system with 3.4-GHz processor
and 32 GB RAM.

As previously discussed, only a subset of all Haar-like feature combinations within a well-production profile is used in the AdaBoost
classification model within each cascade stage. In other words, the sequential fitting procedure described in Table 6 is aimed at selecting
the most discriminative features that best enable us to distinguish between restimulation candidates. Therefore, by looking at the fea-
tures selected by the AdaBoost model at each stage, we can gain additional insight into the mode of operation of the proposed classifica-
tion scheme. Tables 10 through 12 summarize the features selected by the trained model that uses 2 years of data before the
restimulation event in classifying wells on the basis of cumulative production improvement.

First, from Table 10, we see that within all cascade stages, the majority of features selected are two-rectangle templates (z ¼ 1Þ,
with relatively fewer occurrences of three-rectangle templates (z ¼ 2Þ. This suggests that features relating restimulation success to first-
order rate derivatives at different scales and time periods, which help to highlight changes in flow regimes, are more discriminative
than those that consider curvature-related information. Second, from Table 11, we see that across all cascade stages, features evaluated
within the first 6 months of production have been selected more frequently than those evaluated afterward. This suggests that the most-
informative rate-decline characteristics useful in identifying restimulation candidates are available at early periods in the life of the
well. Third, as shown in Table 12, features with maximum scale of 6 months offer the most discriminative information across different
cascade stages. Overall, larger features evaluated at later periods tend to offer limited useful information in discerning between favor-
able and unfavorable restimulation candidates.

Comparison With Type-Curve Approach. To compare the performance of our classification model with that of traditional
approaches, we have analyzed our synthetic well data using the trilinear-flow solution proposed by Brown et al. (2011). We have
selected the trilinear model as a representative analytical solution among a number of existing type-curve methods developed specifi-
cally for multistage hydraulically fractured shale wells. In Fig. 11a, we have plotted the prerefracturing production data on dimension-
less axes according to the trilinear analytical solution. The characteristic dimensionless quantity PwD is proportional to the rate-
normalized pseudopressure drop, and takes into consideration several well, reservoir, fluid, and dual-permeability fracture parameters.

In Fig. 11a, we have plotted the rate data on 1=PwD vs. tD. We take the inverse of PwD to put the data in terms of pressure-
normalized rate. In addition, tD has been computed using material-balance pseudotime. These steps, as are standard in rate-transient
analysis, serve to account for nonconstant rate and nonlinear gas properties as a function of pressure. To plot the well data, information
on hydraulic-fracture properties and geometry, fluid and reservoir properties, and pressure information are required. In addition, given
that the solution is developed in Laplace space, a numerical technique such as the Stehfest (1970) algorithm is required to represent the
results in the time domain.

Number of well-production profiles used for training, N 400 

Number of well-production profiles used for testing, V 100 

True-positive ratio per stage, Dps 0.97 

False-positive ratio per stage, Fps 0.90 

Features per stage multiplier, n 10 

Table 8—Cascaded-classifier-training parameters.

2 Years 3 Years 

Criteria Accuracy (%) 
Cascade 
Stages 

Training Time 
(seconds) Accuracy (%) 

Cascade 
Stages 

Training Time 
(seconds) 

Change in 1-year cumulative 
production 83 13 118 81 11 215 

Change in instantaneous rate 78 13 375 76 14 831 
Change in decline rate 84 10 115 82 13 422 

Table 9—Results for production-data-classifier training and performance with respect to synthetic test data.
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One potential work flow using this type-curve approach would be to select restimulation candidates depending on the qualitative
rate-related criteria inferable from the dimensionless axes, such as cumulative production. In other words, the wells with similar cumu-
lative production profiles observed on the dimensionless axes would be grouped together and classified as favorable or unfavorable can-
didates. For example, on this basis, curves clustered toward the top right might be considered favorable candidates, whereas those
located toward the bottom left might be considered unfavorable candidates. However, this approach can potentially lead to misclassifi-
cations and consequently missed opportunities, as evidenced by the significant overlap between unfavorable and favorable candidates
in Fig. 11a. To illustrate this, we consider the two highlighted wells in Fig. 11a and observe their post-refracturing time-domain
response in Fig. 11b. Judging from the steeper production decline shown by the lower curve (blue) in Fig. 11b after refracturing, we see
that the higher curve (red) has been missed as a favorable restimulation candidate.

We can investigate the combination of fracture, reservoir, and operational parameters that have led to these misclassifications by
revisiting the previously discussed principal-component-analysis results. The flow-simulation parameters corresponding to both wells
and the resulting principal-component data are displayed in Table 13. Overall, the properties used in simulating the false-positive well
in Fig. 11b (blue) yield a principal-component score of –0.437, whereas those used in simulating the false-negative well (red) yield a
score of 1.398. Looking at Fig. 7, we see that these scores both fall within the overlapping region between favorable and unfavorable
candidates, which is characterized by high uncertainty in determining the outcome of restimulation. This can be attributed to the coun-
terbalancing effect of competing reservoir influences. Specifically, if we consider the flow-model parameters used in simulating the

Stage 

Ratio of Features 
Evaluated at  

t = [1,6] Months 

Ratio of Features 
Evaluated at  

t = [7,12] Months 

Ratio of Features 
Evaluated at  

t = [13,18] Months 

Ratio of Features 
Evaluated at  

t = [19,24] Months 

1 0.44 0.11 0.22 0.22 
2 0.67 0.00 0.00 0.33 
3 0.25 0.38 0.38 0.00 
4 0.40 0.23 0.20 0.18 
5 0.43 0.14 0.29 0.14 
6 0.50 0.38 0.13 0.00 
7 0.29 0.26 0.35 0.10 
8 0.47 0.20 0.27 0.07 
9 0.63 0.00 0.38 0.00 
10 0.35 0.35 0.24 0.06 
11 1.00 0.00 0.00 0.00 
12 0.00 0.75 0.00 0.25 
13 0.25 0.00 0.50 0.25 

Average 0.44 0.21 0.23 0.12 

Table 11—Proportions of features selected in each cascade stage, depending on the time instance t at

which the features are evaluated.

Stage 

Ratio of Two-
Rectangle 

Features (z = 1) 

Ratio of Three-
Rectangle 

Features (z = 2) 

1 1.00 0.00 
2 0.67 0.33 
3 0.75 0.25 
4 0.88 0.13 
5 0.86 0.14 
6 0.88 0.13 
7 0.94 0.06 
8 0.90 0.10 
9 0.88 0.13 
10 0.94 0.06 
11 0.67 0.33 
12 0.75 0.25 
13 1.00 0.00 

Average 0.85 0.15 

Table 10—Proportions of features selected in each cascade stage,

depending on the feature template.
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false-positive case, we see that it is characterized by relatively tight hydraulic-fracture spacing and low reservoir pressure, according to
the uncertainty ranges displayed in Tables 1 and 2. However, these are mitigated by factors such as a relatively gentle rate of pressure-
dependent hydraulic-fracture closure, high hydraulic-fracture conductivity, and half-length. As shown in Table 13, when we evaluate
the net weighted sum of these competing reservoir influences (using Eq. 2) along the vector of maximal separation between favorable
and unfavorable candidates in multivariate parameter space, the aggregate effect approaches net zero (i.e., zi ¼ �0:437). Similarly, in
the false-positive case, the influences of high reservoir pressure and half-length are counteracted by poor completion, evidenced by
poor hydraulic-fracture spacing and a more-dramatic rate of pressure-dependent hydraulic-fracture closure.

Overall, these results demonstrate that the combination of reservoir and well parameters and their influence on the rate response can
render it difficult to gauge good restimulation candidates solely using traditional data-analysis methods such type-curve approaches. In
other words, we are not able to resolve the influence of competing reservoir effects on phenomena such as restimulation success by vis-
ualizing rate data on dimensionless axes, such as those that take into account a limited set of fracture, fluid, and reservoir properties. On
the other hand, by decomposing the raw production data into a set of attributes that are related to rate derivatives at multiple time peri-
ods and scales within the well life, we are able to train a probabilistic classification model to better capture the distinction between
favorable and unfavorable candidates. More-detailed modeling to incorporate geomechanics and a wider array of well-completion strat-
egies is required to completely understand the full range of reservoir parameters that affect restimulation-candidate selection. However,
these results depict the manner in which competing reservoir influences can be masked, and show that we are able to better capture the
multivariate separation between restimulation candidates using flow-rate-derived features.

Stage 

Ratio of Features 
With Scale  

Δt = [1,6] Months 

Ratio of Features 
With Scale 

Δt = [7,12] Months 

Ratio of Features 
With Scale  

Δt = [13,18] Months 

Ratio of Features 
With Scale  

Δt = [19,24] Months 

1 0.44 0.11 0.22 0.22 
2 0.67 0.00 0.00 0.33 
3 0.25 0.38 0.38 0.00 
4 0.40 0.23 0.20 0.18 
5 0.43 0.14 0.29 0.14 
6 0.50 0.38 0.13 0.00 
7 0.29 0.26 0.35 0.10 
8 0.47 0.20 0.27 0.07 
9 0.63 0.00 0.38 0.00 
10 0.35 0.35 0.24 0.06 
11 1.00 0.00 0.00 0.00 
12 0.00 0.75 0.00 0.25 
13 0.25 0.00 0.50 0.25 

Average 0.44 0.21 0.23 0.12 

Table 12—Proportions of features selected in each cascade stage, depending on the feature scale Dt.
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Fig. 11—Restimulation-candidate selection using type-curve analysis (i.e., trilinear-flow solution) (Brown et al. 2011). (Left) Well
data plotted on dimensionless axes. (Right) Examples of wells that would be misclassified if restimulation candidates were
selected depending on qualitative criteria observable on dimensionless axes, such as cumulative production.
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Validation With Field Data. Finally, we have validated the proposed approach using publicly available field production data. To
achieve this, we have considered 17 hydraulically fractured gas wells from Freestone County within the Haynesville/Bossier shale play
in east Texas. The sample size is limited by the rigorous screening criteria that we have applied to ensure that the field data match the
simulated conditions as closely as possible. Specifically, each selected case is a hydraulically fractured horizontal shale-gas well that
has undergone restimulation within the first 2 to 3 years of production. Each restimulation event has been corroborated by completion
reports that show evidence of reperforation within the same formation. Also, to limit the effect of variable completion procedures, the
selected wells have been constrained to the same operator within the same county. The production data from the wells used in this study
are displayed in Appendix A.

To quantitatively define whether each of these wells underwent successful restimulation, we have extrapolated the flow rate from
the primary production period using the Arps (1945) hyperbolic model and estimated the percentage increase in cumulative production
1 year after restimulation. On this basis, the field-production profiles shown in Appendix A have been defined as favorable restimulation
candidates, whereas those in Appendix A have been defined as unfavorable candidates for restimulation. These class assignments have
been determined using the thresholds specified in Table 4.

Next, we have attempted to predict suitability for restimulation treatment in each of these wells by making predictions solely using
the gas-rate data before the refracturing events. To achieve this, we have assessed each of these wells using the cascaded classifiers that
were trained with the cumulative production improvement 1 year after restimulation. As previously mentioned, the selected wells were
each refractured after approximately 2 or 3 years of production. Wells that were refractured close to the second year of production have
been assessed using the trained 2-year classifier, whereas those refractured at approximately the third year have been assessed using the
trained 3-year classifier. Because of the limited availability of field examples, missing production data have been estimated using the
Arps (1945) empirical relationship where necessary. For example, because Well 7 in Appendix A has 21 months of available data, we
have extrapolated the final 3 months of production in order to provide 2 complete years of production to the algorithm, so as to maintain
consistency with the trained 2-year classifier. In addition, given that the field data are reported in terms of monthly production volumes,
we have used the Arps (1945) empirical relationship to estimate the instantaneous daily production at the start of each month and to
maintain uniformity with the output of the flow simulator. To account for the time-varying hyperbolic decline constant, we have
achieved this by fitting the field data in intervals of 6 months.

Table 14 displays the results of evaluating the field cases using the trained classifiers. The assumed timing of restimulation for each
field case, the class labels we have assigned depending on the increase in cumulative production after refracturing, the predictions made
by the cascaded classifier, and the estimated probability of restimulation success are shown. From these results, we see that 12 of 17 of
the field-production profiles have been correctly classified using the defined criteria. In other words, using only gas-rate data before
restimulation, we are able to correctly predict the outcome of restimulation with approximately 71% accuracy. This is a statistically sig-
nificant result, according to the single-proportions t-test (p-value¼ 0.02). Overall, these results demonstrate the merit of the proposed

False-Positive Case False-Negative Case 

Parameter k Value k kil ψ Value k kil ψ

Hydraulic-fracture-closure rate 3.37 –0.548 4.19 0.169 
Initial gas saturation 0.797 0.343 0.801 0.377 
Hydraulic-fracture-tip conductivity 19.38 –0.518 5.56 –0.091 
Hydraulic-fracture spacing 120 0.378 120 0.378 
Langmuir volume 86.04 –0.232 54.56 –0.348 
Diffusivity 5.27×10–5 –0.024 6.26×10–5 –0.142 
Shale porosity 8.89×10–2 –0.065 4.26×10–2 0.264 
Reservoir thickness 253 0.187 276 0.268 
Flowing bottomhole pressure 490.34 0.107 451.83 0.139 
Hydraulic-fracture half-length 570 –0.253 510 –0.151 
Hydraulic-fracture conductivity 28.24 –0.239 11.90 0.239 
Shale compressibility 2.57×10–6 0.145 2.25×10–6 0.062 
Langmuir pressure 580.28 0.186 586.41 0.183 
Initial reservoir temperature 325.02 –0.136 149.35 0.102 
Complex fracture conductivity 11.05 0.148 3.27 –0.105 
Complex fracture spacing 0.519 –0.110 1.561 0.048 
Initial reservoir pressure 2455.30 0.102 6462.52 –0.060 
Bulk density 2.955 0.106 2.615 0.014 
Natural-fracture conductivity 4.43×10–3 –0.065 3.02×10–2 0.019 
Natural-fracture spacing 2.948 0.031 2.184 0.042 
Reservoir depth 8825 0.014 5840 –0.018 
Shale permeability 3.007×10–4 0.008 1.856×10–4 0.011 
Complex fracture closure rate 4.26 0.001 4.07 0.000 
Number of hydraulic-fracture stages 7 0.000 9 –0.001 
Principal-component score, zi – –0.437 – 1.398 

Table 13—Principal-component-analysis data corresponding to false-positive and false-negative cases

identified in type-curve analysis. lkwki represents the product of the standardized flow parameter and

the corresponding principal-component loading (see Eq. 2).
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classification approach in analyzing production data from hydraulically fractured gas wells to assist reservoir management and decision
making. In contrast to existing approaches that aim to directly predict gas production after restimulation, this classification method
returns a categorical outcome and an accompanying probability of restimulation success or failure. The computation time required to
assess all 17 field case was instantaneous. The estimated probabilities of fracture success reported in Table 14 are derived from the mul-
tivariate distribution of feature scores using the synthetic training-data set. In other words, they are influenced by the similarity between
the rate-decline characteristics exhibited by the field data and the synthetic examples leading up to the restimulation event. The predic-
tive performance of the trained models therefore suggest overall agreement between the synthetic rate profiles used in training and the
shale-gas production observed in these field cases.

From the results in Table 14, we can observe that when we run our classification model on field data, 7 of 10 wells restimulated at
approximately the 3rd year have been accurately predicted, whereas 5 of 7 of the wells restimulated after 2 years have been accurately
predicted. This is consisted with the assessment of synthetic data in Table 9, where we see slightly better performance in predicting
2-year cases than 3-year cases. Table 15 displays two confusion matrices that describe the classification performance of the trained cas-
cades in assessing both synthetic and field data, depending on the criteria of change in cumulative production 1 year after restimulation.

The upper portion of Table 15 summarizes the model predictions derived from the synthetic test set for both 2- and 3-year cases. We
see that in the cases of misclassification, there is a slightly greater tendency to predict favorable restimulation candidates as unfavorable
than unfavorable candidates as favorable [i.e., the number of misclassifications in the lower-left corner of each confusion matrix shown
in Table 15 (19; 3) is slightly greater than those in the upper right corner of each confusion matrix (17; 2)]. This implies that the cascade
is inherently risk-averse in that it is more inclined to allow a practitioner to bypass reserves (false negative or Type II error) than to lose
money on poor performance after refracturing treatment (false positive or Type I error). This behavior is a consequence of the continua-
tion criterion used in the cascade-training procedure (Table 7), which is given by

Fs > 1� Ds: ð14Þ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Well 

Assumed Timing of 
Restimulation 

(years) 

Change in 1-Year 
Cumulative 
Production Assigned Category Predicted Category 

Estimated 
Probability of 
Restimulation 

Success 

1 3 0.170 Unfavorable Unfavorable 0.32 
2 3 0.224 Unfavorable Favorable 0.92 
3 2 0.462 Favorable Unfavorable 0.31 
4 3 0.451 Favorable Favorable 0.92 
5 2 0.466 Favorable Favorable 0.97 
6 3 0.288 Favorable Favorable 0.98 
7 2 0.680 Favorable Favorable 0.97 
8 3 0.405 Favorable Favorable 0.92 
9 2 0.256 Unfavorable Unfavorable 0.31 
10 3 0.498 Favorable Unfavorable 0.36 
11 2 0.374 Favorable Favorable 0.97 
12 3 0.373 Favorable Favorable 0.93 
13 3 0.382 Favorable Favorable 0.78 
14 2 0.665 Favorable Unfavorable 0.31 
15 3 0.281 Unfavorable Unfavorable 0.36 
16 3 0.136 Unfavorable Favorable 0.98 
17 2 0.605 Favorable Favorable 0.98 

Table 14—Results of field study to validate the classification approach.

Synthetic Test Data 
                                   Predicted 

Actual Unfavorable Favorable 

Unfavorable 83 17 

Favorable 19 81 

Field Data 
                                                              Predicted 

Actual Unfavorable Favorable 

Unfavorable 3 2 
Favorable 3 9 

Table 15—Confusion matrices summarizing classifier error in

predicting favorable and unfavorable candidates using synthetic test

data (upper) and field data (lower).
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The inequality in Eq. 14 means that cascade training is continued until the false-positive-classification ratio Fs is less than or equal
to unity minus the true-positive ratio Ds. This criterion is designed to provide balanced allocation of error between both favorable and
unfavorable categories. However, with a smaller number of training- and testing-data samples, there is a greater tendency toward con-
vergence at a value of Fs slightly lower than 1� Ds. This factor can be mitigated by using more data for cascade training and testing. In
addition, we can adjust Eq. 14 as

Fs > 1� Ds þ b; ð15Þ

where b is a positive or negative fraction. A positive value would lead to increased emphasis on correctly classifying favorable candi-
dates at the expense of error in predicting unfavorable candidates, whereas a negative value would have the opposite effect. This can
serve as a flexible tuning parameter to train the cascaded classifier depending on various economic objectives.

We can observe some disparities in predictive performance between the synthetic and field cases. For example, in the lower portion
of Table 15, we see that two of five unfavorable wells have been misclassified (false-negative error of 40%) compared with a false-
positive ratio of 25%. This contrasts with the results we observe in the upper portion of Table 15, where the false-positive error is
slightly higher. This can likely be attributed to the small sample size of unfavorable candidates in the field-data pool (five wells). In
other words, if we consider additional field data, the overall classification accuracy is likely to be more similar to that reported with the
synthetic cases. In addition, looking more closely at the estimated probabilities of restimulation success in Table 14, we see that
although correctly classified restimulation candidates have high probability, the probability estimates for misclassified wells are compa-
ratively high. One potential source of error is the estimation of multiple months of production using simple empirical relationships,
which might smooth out important decline characteristics and flow-regime changes that are useful in distinguishing between favorable
and unfavorable candidates. Overall, the results of this field study are likely to improve with more-complete knowledge of reservoir and
completion information, as well as more-detailed flow modeling that is calibrated to the specific field.

Conclusions

In this paper, we have proposed a novel probabilistic classification approach for analyzing massive production data sets for hydrauli-
cally fractured shale gas wells to yield information on the effect of near-wellbore fracture characteristics on well productivity. We have
demonstrated the viability of this classification approach for a use case in restimulation-candidate selection. The results show that we
are able to distinguish refracturing candidates in the presence of erratic rate fluctuations, using a cascaded AdaBoost classifier algorithm
that provides both categorical predictions on restimulation success and probability estimates. This serves to quantify the uncertainty
associated with the classifier predictions.

Adapted from face-detection methods, we use a series of texture-based attributes called Haar-like features to characterize well data
as input to the classification algorithm. This data-driven approach is dependent on the understanding that the rate-decline characteristics
invariably reflect the multivariate combination of fracture, fluid, and reservoir properties that contribute to restimulation success. We
have shown that these Haar-like features are analogous to first and second derivatives of flow rate. Therefore, by using these features as
input to our cascaded AdaBoost classification model, we have developed a fast and robust statistical model that is sensitive to flow-
regime changes as well as curvature characteristics at multiple scales and time periods within the life of the well.

To serve as training examples for the proposed classification algorithm, we have generated production data from restimulated wells
using a forward-flow-simulation approach, and quantified restimulation success using numerical metrics such as cumulative-production
improvement 1 year after restimulation. By considering the multivariate distribution of input flow-simulation parameters, we have esti-
mated the relative importance of physical parameters that influence restimulation success. Through analysis of the principal-component
loadings, we have shown that multiple combinations of physical parameters have the potential to counteract one another, thereby
making it difficult to distinguish between restimulation candidates using the type-curve approach considered. However, by capturing a
series of subtle rate fluctuations embedded in Haar-like features, which are related to rate derivatives and curvature attributes at differ-
ent time periods and scales, the proposed approach is able to distinguish between restimulation candidates to a high degree of accuracy
for practical purposes.

It is important to emphasize that the use of simulated data in this study is because of a lack of available field data with known reser-
voir properties and completion information. However, with access to field-production information, the proposed method can easily also
be applied to train a classification model capable of distinguishing between wells that exhibit any two different criteria of interest, and
to develop fast and robust models to analyze future wells. One potential limitation of this approach for use with field data is the depend-
ence of the Haar-like features on the duration and sampling interval of the production data, because they are parameterized by time and
scale. This confines the application of our methodology to regularly sampled production data. The method proposed in this work is not
intended to serve as a replacement for traditional simulator-based analyses. On the contrary, it can serve as a complement to stochastic
history-matching procedures to screen candidate reservoir models that match specific physical criteria.

Finally, the method proposed in this research addresses challenges related to big data from hydraulically fractured wells within frac-
tured shale reservoirs by developing a flexible probabilistic screening tool that is specifically geared toward statistical robustness, com-
putational efficiency, and scalability required for applications involving massive data sets. In other words, although we have
demonstrated this approach within the context of restimulation-candidate selection, it can be easily modified to address other reservoir
management/development decisions by harnessing the rate-related information embedded within massive collections of production
data. Although the training procedure might potentially be relatively computationally intensive, the assessment of production data using
the trained model approaches real time in all cases we have considered. This renders the method amenable to applications requiring
real-time analysis of well performance, which has the potential to affect the management of massive data sets obtained from shale-gas
fields. This helps to facilitate a transition toward work flows involving continuous analysis of well data to bolster confidence and miti-
gate uncertainty in reservoir management and decision making.

Nomenclature

b ¼ Arps (1945) hyperbolic decline constant
bj ¼ threshold for binary classification in weak classifier trained on feature index j
df ¼ pressure-dependent fracture-conductivity-decline constant, 1/psi

Dps ¼ minimum true-positive ratio per stage in cascade training
f ðxijÞ ¼ binary decision stump corresponding to feature j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Fps ¼ maximum false-positive ratio per stage in cascade training
G ¼ AdaBoost classifier model
kf ¼ fracture permeability, md
n ¼ number of features per stage multiplier in cascaded training
N ¼ number of production-data profiles used in training
p ¼ total number of feature combinations

qi ¼ gas-flow rate for well i, Mcf/D
~qi ¼ standardized gas-flow rate for well i
~Qi ¼ standardized cumulative gas-flow rate for well i

t ¼ time, days
tf ¼ total producing time, days
V ¼ number of production-data profiles used in testing

wi ¼ weight assigned to data from well i during AdaBoost training iteration
xi ¼ row vector that contains the features scores associated with each well i
xij ¼ Haar-like feature score computed using production data from well i depending on feature j
yi ¼ true category of well i
z ¼ feature-template indicator

am ¼ expansion coefficient in AdaBoost model at iteration m
b ¼ tuning parameter for cascade-training-termination criteria

em ¼ classification error associated with feature j at stage m
h ¼ AdaBoost model-classification threshold
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Appendix A—Favorable-Candidate Wells Used in Field-Validation Study
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Fig. A-1—Gas-rate profiles for favorable candidate wells used in the field-validation study. The dashed lines represent the
estimated rate trend in the absence of restimulation. The fractional increase in cumulative production (DQ) is estimated relative to
the dashed line.
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Fig. A-1 (continued)—Gas-rate profiles for favorable candidate wells used in the field-validation study. The dashed lines represent
the estimated rate trend in the absence of restimulation. The fractional increase in cumulative production (DQ) is estimated relative
to the dashed line.
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Appendix B—Unfavorable-Candidate Wells Used in Field-Validation Study
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Fig. B-1—Gas-rate profiles for unfavorable candidate wells used in the field-validation study. The dashed lines represent the esti-
mated rate trend in the absence of restimulation. The percent increase in cumulative production (DQ) is estimated relative to the
dashed line.
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